Clathrin- and Dynamin-Independent Endocytosis of FGFR3 – Implications for Signalling

نویسندگان

  • Ellen Margrethe Haugsten
  • Malgorzata Zakrzewska
  • Andreas Brech
  • Sascha Pust
  • Sjur Olsnes
  • Kirsten Sandvig
  • Jørgen Wesche
چکیده

Endocytosis of tyrosine kinase receptors can influence both the duration and the specificity of the signal emitted. We have investigated the mechanisms of internalization of fibroblast growth factor receptor 3 (FGFR3) and compared it to that of FGFR1 which is internalized predominantly through clathrin-mediated endocytosis. Interestingly, we observed that FGFR3 was internalized at a slower rate than FGFR1 indicating that it may use a different endocytic mechanism than FGFR1. Indeed, after depletion of cells for clathrin, internalization of FGFR3 was only partly inhibited while endocytosis of FGFR1 was almost completely abolished. Similarly, expression of dominant negative mutants of dynamin resulted in partial inhibition of the endocytosis of FGFR3 whereas internalization of FGFR1 was blocked. Interfering with proposed regulators of clathrin-independent endocytosis such as Arf6, flotillin 1 and 2 and Cdc42 did not affect the endocytosis of FGFR1 or FGFR3. Furthermore, depletion of clathrin decreased the degradation of FGFR1 resulting in sustained signalling. In the case of FGFR3, both the degradation and the signalling were only slightly affected by clathrin depletion. The data indicate that clathrin-mediated endocytosis is required for efficient internalization and downregulation of FGFR1 while FGFR3, however, is internalized by both clathrin-dependent and clathrin-independent mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner

VEGFR2 is a critical angiogenic receptor playing a key role in vascular homeostasis. Upon activation by VEGF, VEGFR2 becomes endocytosed. Internalisation of VEGFR2 is facilitated, in part, through clathrin mediated endocytosis (CME), the role of which in VEGFR2 function is debated. Here, we confirm the contribution of CME in VEGFR2 uptake. However, curiously, we find that different approaches o...

متن کامل

Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway.

Compensatory endocytosis (CE) ensures recycling of membrane components and maintenance of plasma membrane size; however, the mechanisms, regulation, and physiological functions of clathrin-independent modes of CE are poorly understood. CE was studied in umbrella cells, which undergo regulated exocytosis of subapical discoidal/fusiform vesicles (DFV) during bladder filling, and may then replenis...

متن کامل

Cortactin and dynamin are required for the clathrin-independent endocytosis of γc cytokine receptor

Endocytosis is critical for many cellular functions. We show that endocytosis of the common gammac cytokine receptor is clathrin independent by using a dominant-negative mutant of Eps15 or RNA interference to knock down clathrin heavy chain. This pathway is synaptojanin independent and requires the GTPase dynamin. In addition, this process requires actin polymerization. To further characterize ...

متن کامل

Ca2+ regulation of dynamin-independent endocytosis in cortical astrocytes.

Astrocytes release ATP and glutamate through vesicular exocytosis to mediate neuron-glial interactions. In contrast to exocytosis, the endocytic pathways in astroglial cells are poorly understood. Here, we identify a constitutive endocytic pathway in cultured astrocytes that is dependent on neither clathrin nor dynamin. This dynamin-independent endocytic pathway is regulated by Rab5, an early e...

متن کامل

Synaptophysin regulates clathrin-independent endocytosis of synaptic vesicles.

The GTPase dynamin I is required for synaptic vesicle (SV) endocytosis. Our observation that dynamin binds to the SV protein synaptophysin in a Ca(2+)-dependent fashion suggested the possibility that a dynamin/synaptophysin complex functions in SV recycling. In this paper we show that disruption of the dynamin/synaptophysin interaction by peptide injection into the squid giant synapse pretermin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011